- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Walton, Nicholas (2)
-
Aboudan, Alessio (1)
-
Abreu, Manuel (1)
-
Acuña, Lorena (1)
-
Adams, Moritz (1)
-
Adibekyan, Vardan (1)
-
Aerts, Conny (1)
-
Affer, Laura (1)
-
Agneray, François (1)
-
Agnor, Craig (1)
-
Aguirre_Børsen-Koch, Victor (1)
-
Ahmad, Shehbaz (1)
-
Ahmed, Saad (1)
-
Aigrain, Suzanne (1)
-
Al-Bahlawan, Ashraf (1)
-
Albert, Julie_N L (1)
-
Alcacera_Gil, Ma_de_los Angeles (1)
-
Alei, Eleonora (1)
-
Alencar, Silvia (1)
-
Alexander, Richard (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract IntroductionWe rely on coastal resources for food, water, and energy. However, over 75% of U.S. coastlines are eroding. Concurrently, the U.S. recycles less glass than other developed countries, landfilling hundreds of millions of tons every year. Recycled glass sand has many potential benefits over natural sand for combatting land loss; for example, it can be produced with controlled particle size to better resist erosion, making it an excellent—and underutilized—material for environmental restoration. ObjectivesThis research compares the physical and chemical properties of recycled glass sand to natural sands (beach and dredge) from the U.S. Gulf Coast to assess environmental safety. MethodsParticle size distribution, angularity, particle and bulk density, compaction, and permeability were evaluated using standard methods. Elemental composition and leaching were analyzed using x‐ray fluorescence and toxicity characteristic leaching procedure (TCLP), respectively. ResultsRecycled glass sand is not “sharp,” although it is less well‐rounded than natural sand. Porosity, compaction, and water permeability depend on particle size, and glass sand can be size‐separated to match or complement natural sand. Recycled glass sand is mostly silica. Additional elements used in glass processing are present at acceptable levels, and no leaching of harmful elements is detectable by TCLP. Thermally decomposable residues (e.g. label and adhesive) reliably comprised less than 1% of the material. ConclusionsThe characteristics of recycled glass sand make it a good resource for environmental restoration.more » « lessFree, publicly-accessible full text available June 24, 2026
-
Rauer, Heike; Aerts, Conny; Cabrera, Juan; Deleuil, Magali; Erikson, Anders; Gizon, Laurent; Goupil, Mariejo; Heras, Ana; Walloschek, Thomas; Lorenzo-Alvarez, Jose; et al (, Experimental Astronomy)Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
